Framingham Risk Score Calculator Pdf Free
Fujitsu Siemens Amilo Pro V3515 Audio Driver For Windows Xp here. The predicted and observed event probability estimates represent the mean predicted probability from the Cox proportional hazards regression model and the mean observed probability from the population (Kaplan-Meier estimate) divided into quintiles of predicted probability. Predicted risk categories for quintiles 1 through 5 correspond with 0% to 4.3%, 4.4% to 8.1%, 8.2% to 12.9%, 13.0% to 24.5%, and 24.6% to 53.9%, respectively, for model 2; 0% to 1.6%, 1.7% to 5.3%, 5.4% to 11.0%, 11.1% to 23.1%, 23.2% to 61.7%, respectively, for model 3; and 0% to 1.4%, 1.4% to 4.8%, 4.9% to 10.7%, 10.8% to 24.0%, 24.1% to 61.6%, respectively, for model 6. Nam and D’Agostino χ 2 statistic is 37, 32, and 19 for models 2, 3, and 6, respectively. Author Affiliations: Department of Medicine (Drs Tangri, Stevens, and Levey) and Biostatistics Research Center, Tufts Clinical and Translational Science Institute (Dr Griffith and Mr Tighiouart), Tufts Medical Center, Boston, Massachusetts; Department of Medicine, University of British Columbia, and British Columbia Provincial Renal Agency, Vancouver, British Columbia, Canada (Dr Levin and Ms Djurdjev); and Department of Medicine, Sunnybrook Hospital, University of Toronto, Toronto, Ontario, Canada (Dr Naimark). Abstract Context Chronic kidney disease (CKD) is common.
Kidney disease severity can be classified by estimated glomerular filtration rate (GFR) and albuminuria, but more accurate information regarding risk for progression to kidney failure is required for clinical decisions about testing, treatment, and referral. Objective To develop and validate predictive models for progression of CKD. Design, Setting, and Participants Development and validation of prediction models using demographic, clinical, and laboratory data from 2 independent Canadian cohorts of patients with CKD stages 3 to 5 (estimated GFR, 10-59 mL/min/1.73 m 2) who were referred to nephrologists between April 1, 2001, and December 31, 2008. Models were developed using Cox proportional hazards regression methods and evaluated using C statistics and integrated discrimination improvement for discrimination, calibration plots and Akaike Information Criterion for goodness of fit, and net reclassification improvement (NRI) at 1, 3, and 5 years.
Main Outcome Measure Kidney failure, defined as need for dialysis or preemptive kidney transplantation. Results The development and validation cohorts included 3449 patients (386 with kidney failure [11%]) and 4942 patients (1177 with kidney failure [24%]), respectively. The most accurate model included age, sex, estimated GFR, albuminuria, serum calcium, serum phosphate, serum bicarbonate, and serum albumin (C statistic, 0.917; 95% confidence interval [CI], 0.901-0.933 in the development cohort and 0.841; 95% CI, 0.825-0.857 in the validation cohort). In the validation cohort, this model was more accurate than a simpler model that included age, sex, estimated GFR, and albuminuria (integrated discrimination improvement, 3.2%; 95% CI, 2.4%-4.2%; calibration [Nam and D’Agostino χ 2 statistic, 19 vs 32]; and reclassification for CKD stage 3 [NRI, 8.0%; 95% CI, 2.1%-13.9%] and for CKD stage 4 [NRI, 4.1%; 95% CI, −0.5% to 8.8%]).
Conclusion A model using routinely obtained laboratory tests can accurately predict progression to kidney failure in patients with CKD stages 3 to 5. An estimated 23 million people in the United States (11.5% of the adult population) have chronic kidney disease (CKD) and are at increased risk for cardiovascular events and progression to kidney failure. - Similar estimates of burden of disease have been reported around the world. Although there are proven therapies to improve outcomes in patients with progressive kidney disease, these therapies may also cause harm and add cost.
Study Population Development Cohort. The development cohort was derived from the nephrology clinic electronic health record (EHR) at Sunnybrook Hospital, a part of the University of Toronto Health Network, Toronto, Ontario, Canada.